ENERGY RECOVERY VENTILATOR CASE REFERENCE WORLDWIDE

Commercial **United Kingdom** Mead's Business Centre

Residential Taiwan, China (Central Park)

Residential Taiwan, China (Kuensun condominium) (Merry Day)

Residential Taiwan, China

Panasonic

ENERGY RECOVERY VENTILATOR

ONE-STOP ECO IAQ SOLUTION

- ENERGY SAVING
- AIR PURIFICATION
- THERMAL COMFORT

Panasonic Air Conditioning Philippines (PACPH) Ortigas Avenue Extension, Taytay, Rizal 1920 Philippines Global Site: aircon.panasonic.com PRO Club: panasonicproclub.global

- Specifications are subject to change without prior notice. - Actual colors may vary slightly from those shown.

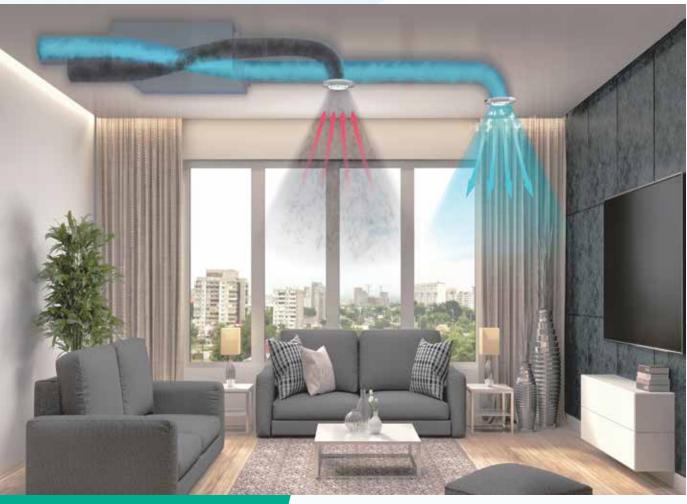
CATALOG NO: P-INERV001

IMPORTANCE OF VENTILATION

Tightly sealed buildings are becoming increasingly common for energy efficiency purpose, reducing energy loss associated with heating and cooling. However, airtight buildings limited ingoing fresh air into the building results in poor indoor quality which adversely affects our health. Adequate ventilation, therefore, plays an essential role in maintaining a healthy living environment.

COMMON ISSUES TRIGGERED BY INSUFFICIENT VENTILATION

Commercial


Residential

1

ERV AS A MODERN SOLUTION

Among various ways of achieving ventilation, the utilization of Energy Recovery Ventilator (ERV) is a modern and effective solution. In different aspects, ERV is able to bring more benefits, comparing to the traditional ventilation method.

1. Achieve Air Purification 2. Increase Comfort Level

	ERV	Traditional Ventilation
Purification of intake air	0	\bigtriangleup
Stable fresh air intake	0	\bigtriangleup
Heat exchange	0	\bigtriangleup
Equipment cost	\bigtriangleup	0
Maintenance cost	\bigtriangleup	0

 \bigcirc Excellent / Available \triangle Less advantageous

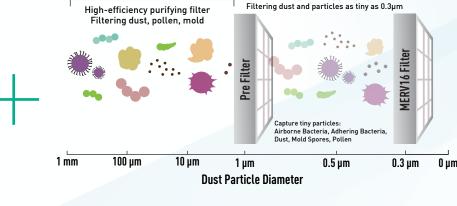
AIR PURIFICATION ENHANCED IAQ

The Energy Recovery Ventilator draws fresh air from outside while stale indoor air is exhausted. With 24-hour continuous ventilation, Indoor Air Quality (IAQ) is enhanced by exhausting out harmful indoor air contaminants.

Filter dust and particles as tiny as 0.3µm

MERV16 High-density purifying filter Filtering dust and particles as tiny as 0.3µm

Efficient Filter


High-density purifying filter removal of particles as tiny as 0.3µm

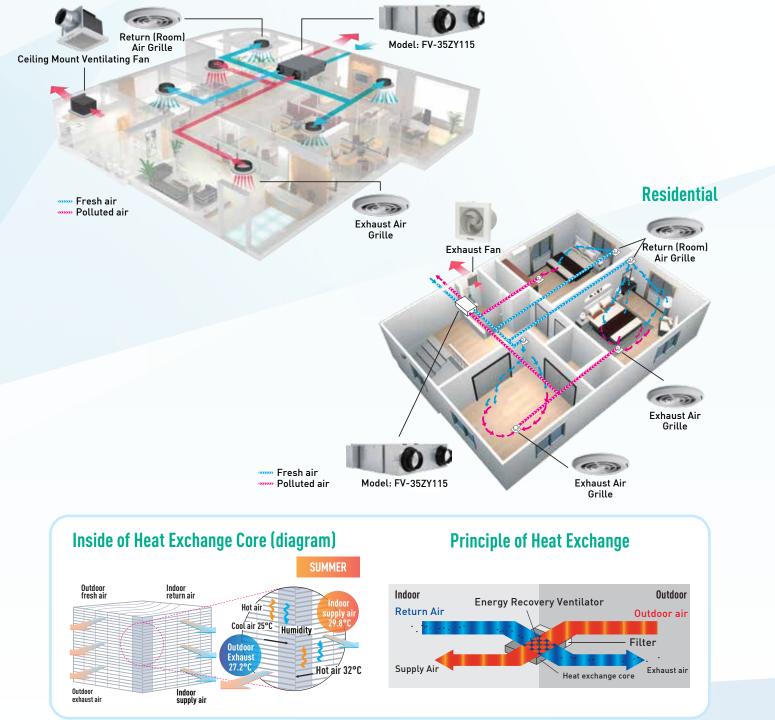
MERV16 Filter

Able to filter 0.3µm up to

*Tested by using MERV16 filter for model FV-35ZY1, following ANSI/ASHRAE Standard 52.2-2017 [Testing Institution: Blue Heaven Technologies, Test report no. 23-105-1] Recommended to change filter every 4-6 months and clean every month

Energy Recovery Ventilator Filter Structure

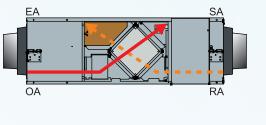
COMFORT


OPTIMUM INDOOR AIR COMFORT

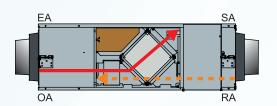
An Energy Recovery Ventilator employs energy recovery technology, which uses balanced airflows and recovers otherwise-expended total energy comprised of heat (sensible energy) and humidity (latent energy). Subsequently, less energy is needed for conditioning while maintaining high-level ventilation.

Thermal Comfort

The newly developed Energy Recovery Ventilator can be interlocked with air conditioning system. It offers balance, humidity control and comfort. Indoor occupants get to enjoy fresh air currents while maintaining optimal temperature.


Office

Speedy Bypass Ventilation


Diversion damper is equipped for Bypass Ventilation. When room airflow (RA) is greater than supply airflow (SA), it allows speedy exhaust of indoor polluted air. By using bypass ventilation during season change, it achieves better thermal comfort and energy savings.

insects

[Heat Exchange Mode]

• In heat exchange mode, it pre-cools the hot outdoor air before entering the house. Thus, energy is saved while providing fresh air.

[Normal Ventilation Mode]

- Bypass vertilation
- When outdoor air is highly polluted, it is not recommended to use bypass ventilation. It may cause negative pressure and polluted outdoor air may ingress into the houses through the gaps at the doors and windows.

Easy Installation and Maintenance

Slim Design

Installation has never been easier. With the height of only 450mm 450mm, Energy Recovery Ventilator is compact to fit into small spaces.

LCD Control Panel can be mounted on the wall, with a

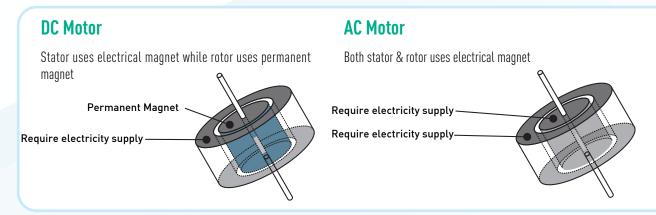
screen displaying circulation mode, airflow, filter maintenance reminder, etc. it offers simplified control buttons for ease of use, all necessary information

LCD Control Panel

with a touch of button.

Flexible Mounting

Compact design and flexible mounting allow for easy installation in various indoor setting. It can be ceiling-mounted or installed upside-down.



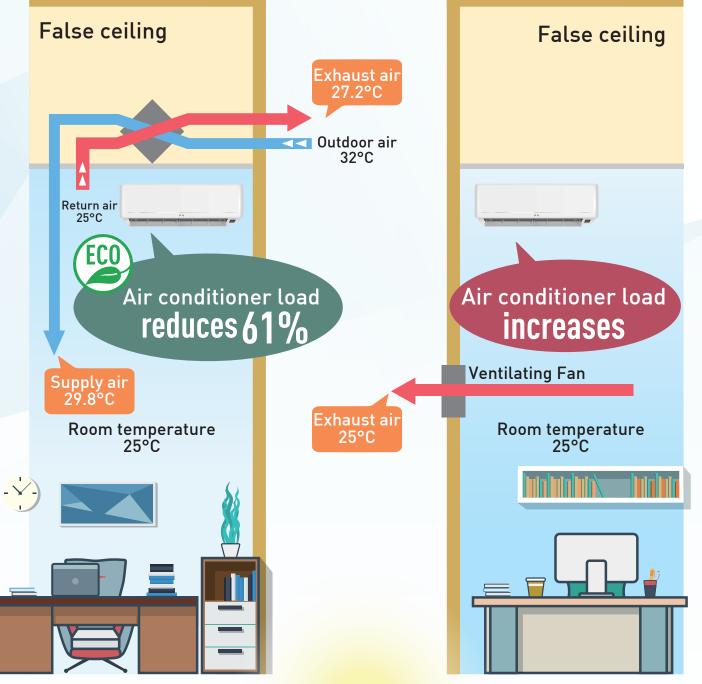
EFFICIENCY

ENERGY AND COST SAVING

Motor Efficiency

DC (Direct Current) motor is used which consumes less power, thus achieves energy savings. In addition, the temperature rise of DC motor is lower when compared with AC (Alternating Current) motor, which results in longer life expectancy of DC motor.

Dual DC Motors


Dual DC motors achieve energy savings by over 43%*

Motors	AC Motors	DC Motors	Energy usage
Electricity use (W)	315	180	-43%

*Comparison between DC model FV-50ZY1 180W vs AC old model (FY-E50DZ1) 315W

significantly reduced.

Energy Recovery Ventilation Mode

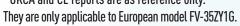
Utilize indoor return air to cool down incoming outdoor air at the heat exchange unit

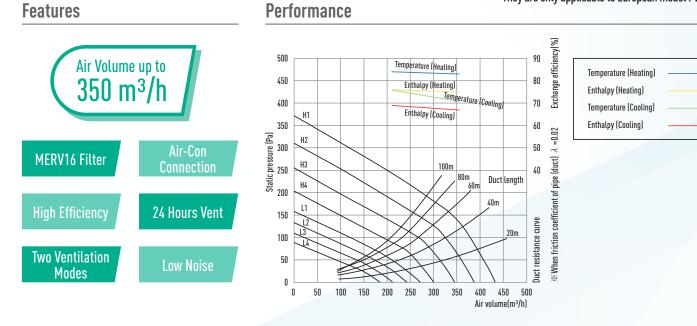
Highly efficient Energy Recovery Ventilator reduces energy loss during ventilation, thus achieves energy saving. Below is an example in summer. By utilizing indoor return cold air to cool down outdoor air before intake to indoor, the indoor cooling effort is

Normal Ventilation Mode

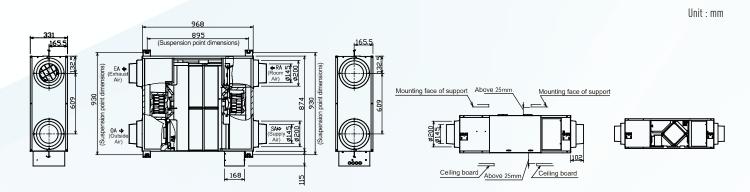
Summer Time

ENERGY RECOVERY VENTILATOR FV-35ZY115




Replacement Filter Part No.: FV-FP35ZY115 Cleaning period: once per month Replacement period: every 4 to 6 months

Safety is verified by various standards including


IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and

CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only.

Dimensions

Model: FV-35ZY115

Voltage & Hz	Notch	Static Pressure	Air Volume	Input Power	Temperature Excha	ange Efficiency (%)	Enthalpy Exchai	nge Efficiency (%)	Noise	Applicable duct	Net Weight
VUILAYE & HZ	NULLII	(Pa)	(m³/h)	(W)	Cooling	Heating	Cooling	Heating	(dB(A))	diameter	(kg)
230V-60Hz	Hi	140	350	149	71	83	67	75	39	Ø1E0	07
2300-0042	Lo	50.5	210	58	76	84	69	76	33	Ø150	3/

1. The input power and exchange efficiency are the values measured under the standard air volume. 2. The above specification are the values measured under the factory set.


The power indicated on the name plate is the maximum value under the static pressure of 0 Pa.
The power indicated on the name plate is the maximum value under the static pressure of 0 Pa.
The noise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber. Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise rises by about 1 dB (A) under reverse installation.

The air volume in normal ventilation mode is basically the same as the air volume in energy recovery mode.
The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003).

ENERGY RECOVERY VENTILATOR FV-50ZY115

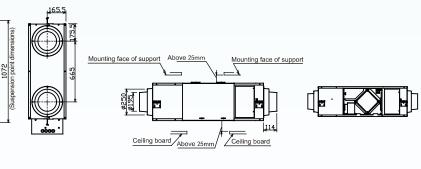
Dimensions

<u>,165.</u> 168

Voltage & Hz	Notch	Static Pressure	Air Volume	Input Power		inge Efficiency (%)		nge Efficiency (%)	Noise	Applicable duct	Net Weight
Vottage & Hz	NOCON	(Pa)	(m³/h)	. (W)	Cooling	Heating	Cooling	Heating	(dB(A))	diameter	(kg)
230V-60Hz	Hi	130	500	189	65	81	62.5	73	43	Ø200	40
2300-0002	Lo	47	300	76	74	82	68	76	32	0200	40

1. The input power and exchange efficiency are the values measured under the standard air volume 2. The above specification are the values measured under the factory set. 3. The power indicated on the name plate is the maximum value under the static pressure of 0 Pa.

4. The poise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber. Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise rises by about 1 dB (A) under reverse installation.


The air volume in normal ventilation mode is basically the same as the air volume in energy recovery mode.
The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003).

Replacement Filter Part No.: FV-FP50ZY115 Cleaning period: once per month Replacement period: every 4 to 6 months

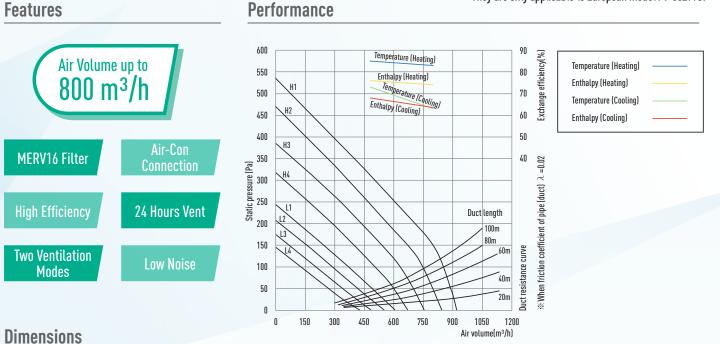
Safety is verified by various standards including IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only. They are only applicable to European model FV-50ZY1G.

Unit : mm

ENERGY RECOVERY VENTILATOR FV-65ZY115

Replacement Filter Part No.: FV-FP65ZY115 Cleaning period: once per month Replacement period: every 4 to 6 months

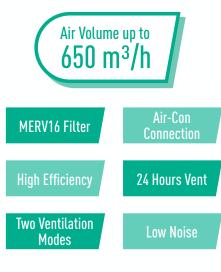
Performance

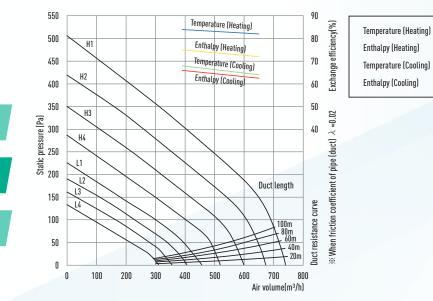


Safety is verified by various standards including IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only. They are only applicable to European model FV-65ZY1G.

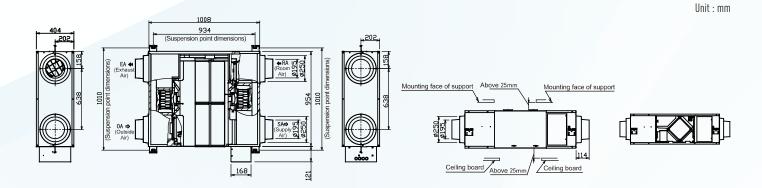
Dimensions

1224 168


Model: FV-80ZY	115										
Voltage & Hz	Notch	Static Pressure (Pa)	Air Volume (m³/h)	Input Power (W)	Temperature Excha Cooling	ange Efficiency (%) Heating	Enthalpy Exchar Cooling	nge Efficiency (%) Heating	Noise (dB(A))	Applicable duct diameter	Net Weight (kg)
					cooung	neaung		neaung	(UD(A))	ulumeter	(Ny)
230V-60Hz	Hi	150	800	494	63	83	63.5	73	45	Ø250	60
2309-00112	Lo	54	480	212	73	85	68	75	35	Ø200	00


The input power and exchange efficiency are the values measured under the standard air volume.
The above specification are the values measured under the factory set.

The power picture indicated on the name plate is the maximum value under the static pressure of 0 Pa.
The noise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber. Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise rises by about 1 dB (A) under reverse installation.


The air volume in normal ventilation mode is basically the same as the air volume in energy recovery mode.
The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003).

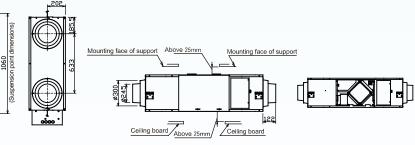
Dimensions

Model: FV-65ZY115

Voltage & Hz	Notch	Static Pressure	Air Volume	Input Power	Temperature Excha	ange Efficiency (%)	Enthalpy Exchai	nge Efficiency (%)	Noise	Applicable duct	Net Weight
vollage & nz	NULLII	(Pa)	(m³/h)	(W)	Cooling	Heating	Cooling	Heating	(dB(A))	diameter	(kg)
230V-60Hz	Hi	150	650	441	64	82	62.5	72	45	Ø200	/0
2300-0002	Lo	54	390	180	68	84	66	75	34	ØZUU	40

1. The input power and exchange efficiency are the values measured under the standard air volume. 2. The above specification are the values measured under the factory set.

The power indicated on the name plate is the maximum value under the static pressure of 0 Pa.
The power indicated on the name plate is the maximum value under the static pressure of 0 Pa.
The noise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber. Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise rises by about 1 dB (A) under reverse installation.


The air volume in normal ventilation mode is basically the same as the air volume in energy recovery mode.
The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003).

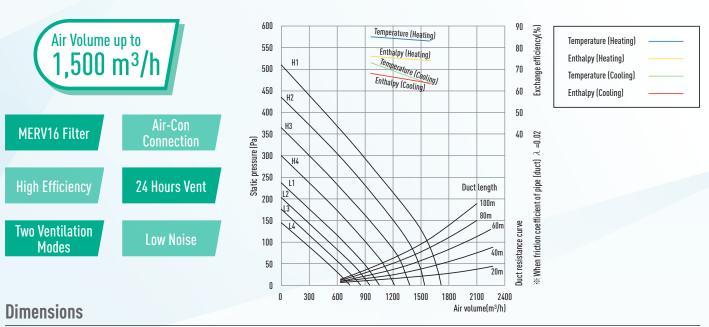
Replacement Filter Part No.: FV-FP80ZY115 Cleaning period: once per month Replacement period: every 4 to 6 months

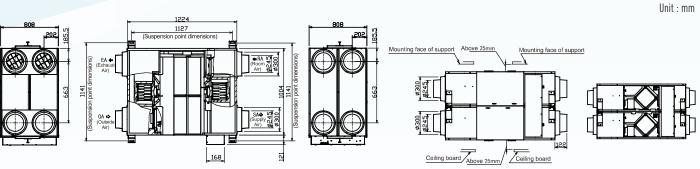
Safety is verified by various standards including IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only. They are only applicable to European model FV-80ZY1G.

Unit : mm

ENERGY RECOVERY VENTILATOR FV-1KZY115

Replacement Filter Part No.: FV-FP1KZY115 Cleaning period: once per month Replacement period: every 4 to 6 months


Safety is verified by various standards including IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only. They are only applicable to European model FV-1KZY1G.


ENERGY RECOVERY VENTILATOR FV-1HZY115

Features

Performance

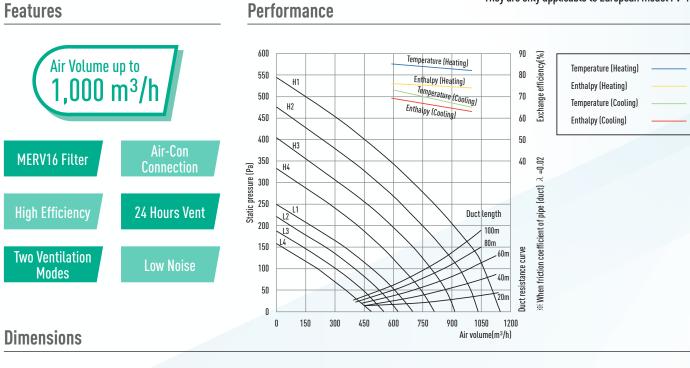
Model: FV-1KZY115

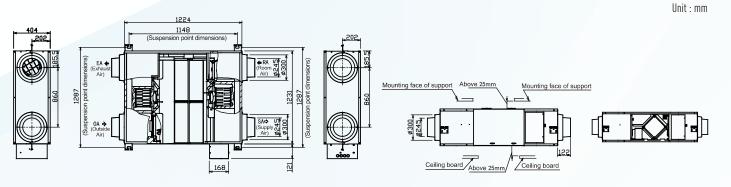
Voltage & Hz	Notoh	Static Pressure	Air Volume	Input Power	Temperature Excha	ange Efficiency (%)	Enthalpy Excha	nge Efficiency (%)	Noise	Applicable duct	Net Weight
Vullaye & H	Notch	(Pa)	(m³/h)	. (W)	Cooling	Heating	Cooling	Heating	(dB(A))	diameter	(kg)
230V-60Hz	Hi	150	1000	578	65	82	63	74	46	Ø250	4
2304-0002	Lo	54	600	235	73	85	69	76	36	Ø200	04

1. The input power and exchange efficiency are the values measured under the standard air volume. 2. The above specification are the values measured under the factory set.

The power indicated on the name plate is the maximum value under the static pressure of 0 Pa.
The power indicated on the name plate is the maximum value under the static pressure of 0 Pa.
The noise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber. Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise rises by about 1 dB (A) under reverse installation.

The air volume in normal ventilation mode is basically the same as the air volume in energy recovery mode.
The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003).


11


Model: FV-1HZ	115										
Voltage & Hz	Notch	Static Pressure (Pa)	Air Volume (m³/h)	Input Power (W)	Temperature Excha Cooling	ange Efficiency (%) Heating	Enthalpy Exchar Cooling	ige Efficiency (%) Heating	Noise (dB(A))	Applicable duct diameter	Net Weight (kg)
230V-60Hz	Hi	130	1500	987	63	83	63.5	73	49	Ø250	116
2300-0002	Lo	48	900	430	73	85	68	75	41.5	ØZJU	110

1. The input power and exchange efficiency are the values measured under the standard air volume 2. The above specification are the values measured under the factory set.

3. The power indicated on the name plate is the maximum value under the static pressure of 0 Pa. 4. The noise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber. Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise rises by about 1 dB (A) under reverse installation.

The air volume in normal ventilation mode is basically the same as the air volume in energy recovery mode.
The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003).

Replacement Filter Part No.: FV-FP80ZY115 (2 sets are used each time) Cleaning period: once per month Replacement period: every 4 to 6 months

Safety is verified by various standards including IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only. They are only applicable to European model FV-1HZY1G.

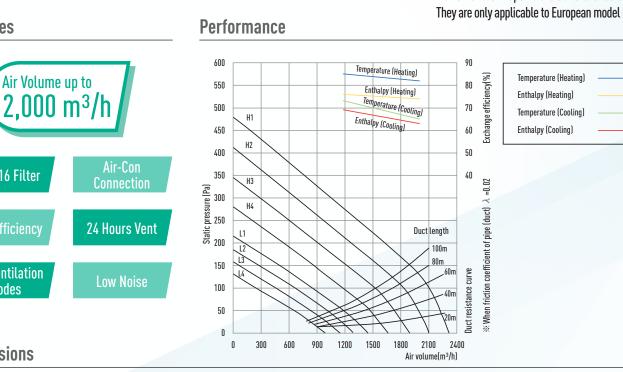
ENERGY RECOVERY VENTILATOR FV-2KZY115

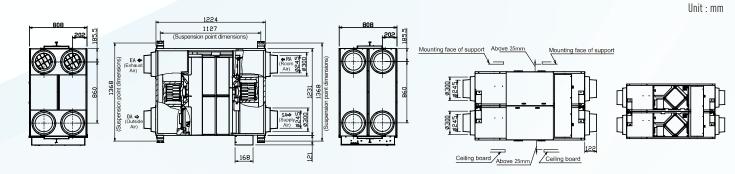
Features

9

MERV16 Filter

High Efficiency


Two Ventilation


Modes

Dimensions

Replacement Filter

Part No.: FV-FP1KZY115 (2 sets are used each time) Cleaning period: once per month Replacement period: every 4 to 6 months

Model: FV-2KZY115

Voltage & Hz	Natah	Static Pressure	Air Volume	Input Power	Temperature Excha	ange Efficiency (%)	Enthalpy Exchar	nge Efficiency (%)	Noise	Applicable duct	Net Weight
VUILAYE & TZ	Notch	(Pa)	(m³/h)	(W)	Cooling	Heating	Cooling	Heating	(dB(A))	diameter	(kg)
230V-60Hz	Hi	130	2000	1155	65	82	63	74	51	Ø250	139
2300-0042	Lo	48	1200	490	73	85	69	76	43.5	- Ø200	137

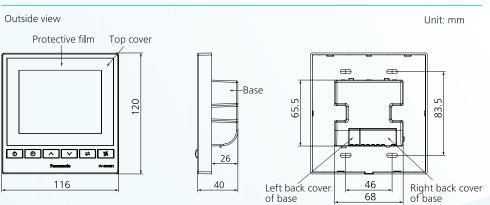
The input power and exchange efficiency are the values measured under the standard air volume.
The above specification are the values measured under the factory set.
The power indicated on the name plate is the maximum value under the static pressure of 0 Pa.
The noise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber. Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise is by about 1 dB (A) under reverse installation.
The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003).

110 - 110 in	(8154	1000

Safety is verified by various standards including IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only. They are only applicable to European model FV-2KZY1G.

ACCESSORY

Control Panel



FV-SWGR1

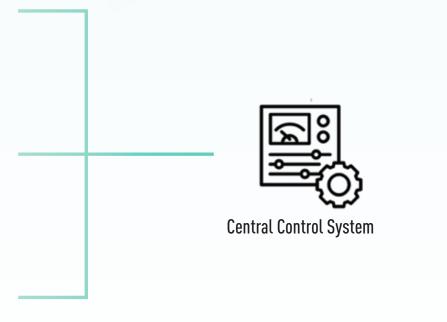
Features

Voltage: 230V Rated Wattage: 2W Dimension: 116mm x 120mm Weight: 0.26kg LCD Panel Switch Button between heat exchange and ventilation

Dimensions

The control panel has built-in RS485, supports communication with the BMS (Building Management System), allowing interlocking between the ERV and the Air Conditioning system through non-voltage contact.

ERV



ERV

A/C

