
- *1. Dimension of filter maintenance cover.
- *2. Dimension of maintenance cover.
- *3. Suspension point dimension

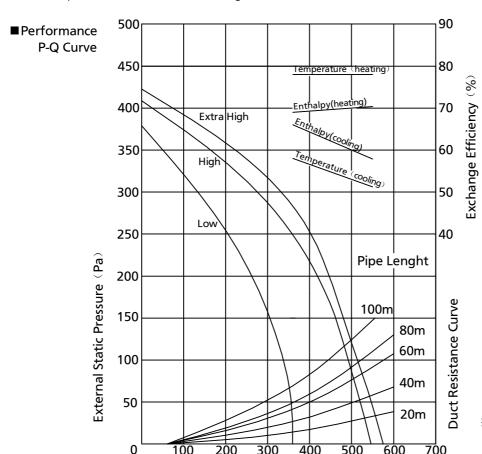
NO.	Paet name	Q'ty	Material	Remarks
1	Frame	1	Galvanized steel sheet	
2	Adapter	4	ABS	
3	Impeller	2	PP	
4	Fan motor	1		
5	Heat exchange core	2	Special paper+resin	
6	Outdoor filter	2	Nonwoven Fabric	
7	Indoor filter	2		
8	Ceiling suspension	4	Galvanized steel sheet	
9	Switch box	1	Galvanized steel sheet	

\blacksquare Installation diagram

- 1. Duct size (Nominal Diameter):Ø200.
- $2\sqrt{100}$ The above dimensions do not include the thickness of the insulation material in the unit .
- Be careful of dew and frost
- 1. The two outside ducts must be insulated to prevent condensation (Material :Class wool.Thickness:25mm)
- 2. Outside air may come into the room in cold area and place where outside air speed is high.
- 3. In order to prevent the water from ingessing, install the two outside ducts inclined to outside.
- 4. As shown in the Figure, suppose a high temperature absorbing air condition A and a low temperature absorbing air condition B are plotted on the air line figure, then a high temperature air A is heat-exchanged by the unit and gose out of the saturation curve as shown by point C. In this case, the unit will be dewed or frosted. To aboid this, you are required to heat a low temperature air B up to B' so as to get C' below the saturation curve, before using the unit.

Energy Recovery Ventilator FY-E50DZ1L Date of Made 2015.03.13 Scale Drawing Reference No. Consale Drawing Rev.No.		Name	Model No.			
Drawing Consolo Drawing	Energy	Recovery Ve	FY-E50DZ1L			
Date of Revision Free Reference No. Consale Drawing	Date of Made	2015.03.13	Scale	Drawing		Rev.No.
	Date of Revision		Free	Reference No.	Consale Drawing	

Panasonic Ecology Systems Guangdong Co., Ltd., Beijing Branch


■ Specification

	power Source Notch	Heat Exchange Ventilation									
1 '		Input Current [W] [A]	Air Volume	External Static Pressure	Temperature Exchange Efficiency [%]				Noise [dB(A)]	Product Weight	
			[A]	(m³/h)			Heating	Cooling	Heating	[ub(A)]	[kg]
	Extra High	315	1.43	500	120	53	78	60	70	37	
220V ~ 50Hz	High	288	1.31	500	85	53	78	60	70	37	45
	Low	210	0.95	360	0	58	78	66	69	31	

- 1.The input power, the current and the exchange efficiency are measured at the standard air volume.
- 2. The noise is measured 1.5m away from the underface of the unit.

The noise value measured at the total acoustic room is more than the indicated value in actual operation. because it's affected by environment.

3. The above parameters are tested according to standard JIS B 8628.

*When friction coefficient of pipe(duct) $\lambda = 0.02$

Use conditions

Outdoor air range

Temperature range -10° ~40°. Relative humidity 85% or less. Indoor air range

Temperature range -10° ~40°. Relative humidity 85% or less.

Installation requirements

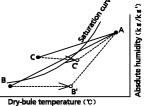
Same as the indoor air conditions
*Indoor air here means air
in air-conditioned living rooms.
Its use in refrigerators or other places
where temperature can fluctuate
greatly is prohibited even if a
temperature range is acceptable.

Example Indoor air conditions

During cooling period

Temperature 27°C

Relative humidity 50%


During heating period

Temperature 20°C

Relative humidity 40%

As shown in the Figure, suppose a high temperature absorbing air condition A and a low temperature absorbing air condition B are plotted on the air line figure, then a high temperature air A is heat-exchanged by the unit and gose out of the saturation curve as shown by point C. In this case, the unit will be dewed or frosted. To aboid this, you are required to heat a low temperature air B up to B' so as to get C' below the saturation curve, before using the unit.

Air Volume(m³/h)

	Name	Model No.					
Energy	Recovery Ve	FY-E50DZ1L					
Date of Made	2015.03.13	Scale	Drawing		Rev.No.		
Date of Revision		Free	Reference No.				
Panasonic Ecology Systems Guangdong Co. Ltd. Reijing Branch							